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In this part, the simplest optical theory of aggregated metal systems, due to Maxwell-
Garnett, is analyzed. The complex dielectric constant of the system, and that of the constit-
uent metal aggregates, are represented as transformations. The functions show single and

double poles in certain regions of physical interest, indicating resonance behavior.

These

features are explored for free-electron metals, and an optical “conduction resonance” for

the aggregated system is discovered. The resonance frequency and the magnitude of the opti-
cal conductivity are calculated, along with the plasma frequency and the magnitude of the

bulk electron loss function. A relation between conduction and plasma resonances is estab-

lished and it is found to be independent of the free-electron parameters of the metal.

This,

and other results, indicate that the conduction resonance is a macroscopic effect, being due
to a collective polarization interaction between the constituent metal aggregates, and it may

be looked upon as a kind of transverse plasma resonance.

results will be applied to real metals.

I. INTRODUCTION

Optical phenomena associated with aggregated
metal systems have been the subject of many stu-
dies.!™® The scattering of light by submicroscopic
metal aggregates, suspended in a dielectric medi-
um, already attracted attention before the turn of
the century.! Colloidal color centers in alkali
halide crystals, 2 “anomalous” optical properties of
thin metal films® and of surfaces of bulk metals, *'°
and scattering by metal sols are areas of important
current research, The material system, generally
being composed of a dielectric matrix in which the
metal aggregates are dispersed, may be specified
phenomenologically by its complex frequency-de-
pendent dielectric constant 8(w)= &,(w)+i &,(w).
Physically, the description of the system is given
by the properties of the constituent metal and the
dielectric. Theoretically, the optical properties
of aggregated metal systems may be described in
terms of the index of refraction of the dielectric
matrix n, the frequency-dependent complex dielec-
tric constant of the metal aggregates €(w)=¢€,(w)
+i€,(w), and the volume fraction of the metal ¢ by
the Maxwell- Garnett (MG) theory® as

[8(@)-7n?]/ [8(w)+ 2]

=q[é(w)-n?]/ [E()+2n%].
In the theory, it is assumed that the metal aggre-
gates are spherical, that they are much smaller than
the wavelength of the incident light, and that they

are randomly distributed in the dielectric matrix.
The theory takes no precise account of the interac-
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In the second part, the present

tion between aggregates; rather, it considers the
average affect of polarization on the interacting
aggregates using the Lorentz correction to the local
field. The size of the individual metal spheres is
also irrelevant in the theory as long as it is much
less than the wavelength of the incident light.
Therefore the variation of size of aggregates is
allowed. These approximations would appear to
restrict the usefulness of the theory to systems
where the aggregates are very small and are far
apart, i.e., to systems with very small metal con-
tent. However, experimental evidence appears to
suggest that the simple MG theory gives a good
qualitative description of the optical properties of
aggregated systems for all values of ¢, where
0<g <1, but not for g=0 and g=1. Sennett and
Scott” used the theory for aggregated metal films
followed by other workers with good results. Re-
cently, the theory was applied® to bulk metals with
rough surfaces in an attempt to explain the Mayer
anomaly?® for alkali metals.

Improvements, aimed at overcoming some of the
shortcomings of the MG theory, have been advanced.
The aggregate size as a variable was introduced by
Mie, ® spherical geometry was replaced with rota-
tional ellipsoids by Schopper, !° and variation of the
size of aggregates was taken into consideration by
Yoshida et al.'! These modifications improved the
theoretical situation, but only at the expense of add-
ing one or more new variables to the problem that
was already six dimensional. Therefore, to avoid
undue complications in the present work we shall
use the simple MG theory.
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With the exception of one recent effort, ' the MG
theory has not been analyzed algebraically in any
detail, likely because of the multitude of variables
involved and the consequent difficulty in visualizing
the functional relations in terms of these variables.
Some special features of the theory for thin metal
films have been discussed by Marton'? where the
treatment was restricted to long wavelengths and
free-electron-type metal aggregates. In the pres-
ent work we give a general algebraic analysis of the
theory, independent of any specific electronic mod-
el of the constituent metal aggregates. The results
are then applied to free-electron metals, with spe-
cial attention being paid to a sharp resonance in the
optical conductivity and to the plasma resonance of
the system. The consequences of the features are
discussed and the optical behavior of an idealized
system is analyzed as a typical example.
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coordinate transformation, i.e., we map the complex
function 8= &, +i&, on the complex field €= €, +i€,,
through the scalar quantity g. To carry out the
transformation in the simplest manner, we assume
the index of refraction for the dielectric matrix to
be unity. The justification for this will become ap-
parent later. We start then with the relation

&-1)/@B+2)=qE-1)/E+2), )

where & is the complex dielectric constant of the
system, and where the system is composed of ¢
volume fraction of metal with complex dielectric
constant €. For simplicity we dropped w.

The object is to find the contours &;=const and
8,=const in the Cartesian-coordinate system (€,, €;)

II. THEORY for every value of g. Equating the real and imag-
In order to analyze Eq. (1), we make a complex- inary parts in (2) we get
|
g, (el +20)1-q)+ €1(44°+g +4)+2(1-q)(g +2) @)
! €Ere)(1-q)+26,(1-q)@+2)+@+2F
and
8,= % €4 @

(€+e)(1-a)+26,(1-q)g+2)+@+2)

Now set 8,=C, in (3), and after some manipulation we get

(oe L (1=9)+0.5(1+29)(2+q)=C,(1 - q)(2+q)> rete

(1+29)(1-9)-C, (1-9q)

This is recognized to be an equation of circles,
i.e., (e;+a)’+€3=7r2 with centers on the €, axis
at position a and with radius . We note from (5)
that

-2+9)/(1-9q), (6)

and since the second term on the right-hand side
depends on g only, all circles C, for a given value

of ¢ must be passing through the point -~ (2+¢)/(1 - q)

on the €, axis and be tangent to each other at that
point. We also note from (5) that for a given value
of g the radius » can have both positive and nega-
tive values. A positive radius means that the cen-
ter of the circle is to the right of the point - (2+¢q)/
(1 - q) on the €; axis while a negative radius means
the center is to the left. The radius may also be
infinitely large. This is representec by a straight
line, passing through the €, axis at right angle, at
- (+g)/(1-q). The 8,=C, contours are illustrated
in Fig. 1(a) for ¢ =0.7, and for several values of
C, in the (€,, €;) plane. The special position
- (2+9)/(1-q) on the €, axis is apparent.

Now we find the &, contours by setting 8,=C, in

4,5q 2
1+29)1-4)-C; <1-q)2) ' (5)

(4) and by putting the equation in the form

(‘1 %)* (GZ' zg;fl - q)z)z‘ (202?1 -q° )a '
(7

This is also recognized to be an equation of circles,
i.e., (€,+b)%+(€a—d)*=R%, From Eqs. (6) and (7)
we see that b= -a, and d=R. This means that the
centers of circles for a given value of ¢ all lie on
the line €;=- (2+¢)/(1-¢q), and that the circles are
tangent to each other and to the €, axis at this point
on the €, axis. The &§,=C, contours are illustrated
in Fig. 1(b) for ¢ =0. 7 and for several values of C,
in the (€,, €;) plane. Note that the special position
- (2+9)/(1 - ¢q) on the €, axis is the same as that
for the &, contours in Fig. 1(a).

Taken together, the 8, and &, contours on the
(€4, €3) plane for a given value of ¢ represent the
complete transformation for that value of ¢. The
new coordinate system (8, &,) is orthogonal, and
resembles the Smith chart, familiar to radio engi-
neers. The coordinate systems (&;, §,) mapped on
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FIG. 1. (a) Contours of 8;=C; on the (€;, €,) plane

for ¢=0.7 as calculated from Eq. (5). Note the pole at
- (2+¢)/(1-¢q) on the € axis. (b) Contours of 8,=C,
on the (€, €,) plane for ¢=0.7 as calculated from Eq.
(7). Note that the poles for &, and &, coincide.

the Cartesian plane (€,, €;) for several values of ¢
are plotted in Fig. 2. The values of €, were re-
stricted to the physically meaningful domain of
€,= 0. This figure shows the general features of
Eq. (2) in all of its five variables. It becomes
clear now why we had to take n=1 in Eq. (1). Had
we chosen n to remain as a variable, it would have
added another dimension to the problem and pre-
vented us from visualizing the transformation graph-
ically. Moreover, values of n» different from unity
do not affect the general features of the maps in
Fig. 2, they merely shift the values of some of the
coordinates.

It is apparent from Fig. 2 that for all ¢ values
the point [e,=~ (2+¢)/(1-q), €,=0]is a pole for
both functions 8, and §,. The pole of 8, is positive,
while &, has a negative pole at the right, and a
positive pole at the left of this point. For small ¢
values the poles are at [€;=- 2, €,=0), and for
large g values they shift to large negative e, val-
ues. Atg=1, we get [e;=- =, €,=0]for the poles.
Also, for this value of ¢ the § contours become
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straight lines and we have (8, §; )= (€, €;) as ex-
pected from Egs. (3) and (4). On physical grounds,
we exclude from the present consideration values

- q=0.3 / —
107
0
m q=0.! / =
i
I
10 |
0= T

FIG. 2. Coordinate system (8,, &,) mapped on the
Cartesian plane (€;, €,) for several values of g, repre-
senting the complete MG transformation according to
Egs. (5) and (7). Transformation is restricted to the
physically meaningful region of €,=0.
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of ¢ equal to zero or unity and those that are close
to one, since for ¢=0 or ¢=1 we get, respectively,
the trivial cases of a purely dielectric or a purely
metallic medium, while for ¢ =1 the assumptions of
the MG theory do not hold. However, we do allow
values of g up to 0. 9 for completeness, !* but will
take the necessary precautions in the interpreta-
tions of the results.

III. FREE-ELECTRON METALS

Consider a system of metal aggregates in a
dielectric medium, where the system satisfies the
assumptions of the MG theory, and where the index
of refraction of the dielectric is unity. Let the
metal aggregates be the free-electron type, char-

acterized by the plasma frequency w,= (47 Ne?/m*)'/?

and the relaxation time 7 of the free electrons.
Here e, N, and m* are, respectively, the charge,
the number density, and the effective mass of the
conduction electrons. Let us examine the optical
properties of the system at frequency w. The real
and imaginary parts of the frequency-dependent
complex dielectric constants of the free-electron
metal aggregates are given, respectively, by the
simple Drude theory as

€=1- (W37%)/ Q1 +w?7?) (8)
and

€= (wir?)/[wl+w?7?)]. (9)

To obtain the complete frequency and g depen-
dencies of the dielectric constants &, and 8, of a
system for a given metal, having given values of
w, and 7, we should substitute functions (8) and (9)
into (3) and (4). This approach would lead to un-
manageable algebra and give no useful solytion. In-
stead, we approach the problem graphically, by
plotting functions (8) and (9) on the complex MG

I-q
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maps developed above. The solution for &,(w, q)
and &,(w, ¢) for a given metal is readily provided
by the maps, by simply reading the intersections
of the plot and the &, and &, axes. An example'® of
the approach is given in Fig. 3, for ¢=0.7, fiw,
=6.6 eVand 7=2.6X107" sec. The dielectric con-
stants of the metal itself, €,(w) and €,(w), as well
as those of the system, &,(w,q) and &8,(w, g), with
the same parameters ¢, w,, and 7 are replotted in
a more conventional fashion in Figs. 4(a) and 4(b).
The difference between the dielectric constants €
and & are apparent from the figures. The main
feature of the transformed quantities & is a reso-
nance in &, at a frequency where §,~ 0. This is
reminiscent of another resonance, at the frequency
where the real part €; of the dielectric constant
for free-electron metals is zero, i.e., the bulk
plasma resonance.

Plasma resonance is indicated by a peak in the
bulk electron energy-loss function (Lg), defined in
terms of the dielectric constants as

Lg=—Ime&™. (10)

Applying the same definition to the transformed
dielectric constants &, we expect a peak in the loss
function — Im&~! at the frequency or frequencies
where §,~0. In Fig. 4(c) we plot Ly for both

€ and & and see that in both cases there is only
one peak. Further, we see that the resonance in
Ly for & does not coincide with the resonance in
8, in Fig. 4(b). Rather, the two resonances cor-
respond to the two frequencies at which 8,=0 in
Fig. 4(a). For the free-electron system, there is
only one resonance frequency at €;~ 0 and that
corresponds to the bulk plasma resonance.

From the foregoing we may conclude that the
resonance in &, is not due to plasma in the usual
sense. We denote the frequency at &, resonance
wpg, and call the feature “optical conduction reso-

FIG. 3. Free-electron curve plotted
on the map for ¢g=0.7. The free-elec-
tron parameters w, and T were given
values for this figure as well as all
subsequent ones of Zw,=6.6 eV and

7=2.6%10"! sec being typical of good
conduetors. Frequency dependence
is indicated by the photon energy in
eV marked opposite the curve. Note
that all the relevant variables, i.e.,
€, € 811 82’ 4, Wp, T, and w, are
contained in the figure.
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W, w, Q, denoted by wj, and that for € by Q7. In the exam-
¢ I " L L1 by ple, we find wi <wy and wg <Ng.
' P For free-electron metals, we know that the reso-
al (O) | » .
| | nance frequency of the damped plasma Q% is re-
2007 : Cr lated to the plasma frequency w, by
. B & Qr=(w}-1/7%"2, (11)
£, ll | and now we seek expressions for the resonance fre-
0 — quencies wy and wg of the aggregated system. We
;! proceed by calculating wk and wy from Egs. (3),
_ DL (4), (8), and (9), assuming that both conduction and
€ €, | : plasma resonances occur at frequencies for which
. 8,=0. Thus we set the numerator of (3) equal to
2004 LT zero and substitute €, and €, from (8) and (9). This
: | gives
. LF
I I
| . 9B%+[18-3(2+4¢)A?]
-400 . N
= - T xB*+[9-3(2+q)A%+ (1+29) (1+q)A%]
€ (b) ;o
€ I : - x B3+ (1+29)(1 -q)A*=0,
o
400 ;! B where A =w,7 and B=w7. The equation is cubic in
;! the variable B2 and an inspection shows that B?= - 1
—]€; €, N is a root. This root is of no physical interest so
;! BZ%:1 can be factored out, resulting in
|
200 T
b 9B*+[9-3(2+9)A%)B%+ (1+29)(1-¢)A*=0.
[
- (.
[
/k | I The equation is quadratic and the solution is
0 L [
— @
Lg | —Im € | ] I 1 ] )
[ ! hw(eV) g
200 | r 6 —
-
Il -Im & — o
| - -
100 | L
i T e "
I ) UL w!
0 T 1 T T | E— T ] R »
o | 2 3 5 6 7
fhw (eV) 2 - L
FIG. 4. Free-electron quantities used in Fig. 3 for
¢=0.7 are replotted as functions of w in a more conven- i
tional fashion. (a) Real parts of dielectric constants B
€; (free electron) and 8, (aggregate system); (b) imagi-
nary parts of dielectric constants €, (free electron) and 0 T T . T

82 (aggregated system); and (c) the bulk electron energy-

loss functions of the free-electron metal and the aggre- ° 2 4 © 8 ‘
gated system. Note the frequencies wp, w¥, and QF 9
at which resonances occur. FIG. 5. Variation of resonance frequencies wi and

wg of the aggregated system with ¢ for the example.
" . Upper curve represents plasma resonance and the lower
nance.” The reason for the name will be apparent one gives the g dependence of the conduction resonance
later. The plasma resonance frequency for § is frequency. At small g values wg =~ wkg.
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B2=1{-3+(2+9)A%£[9-6(2+9)A%+9¢°A*]?} .

It is easy to show that for BZ to be real and positive

P. MARTON AND J. R. LEMON 4
the condition
12) A%2{2+q+2[(1+20)1-9)]"?} /3¢
has to be satisfied. The two roots wk and wg are
thus
1
{w;} =<w2*<2+q)—3x[9-ewfif <2+q>+9«zzwh‘]"a)“2, 13)

w}

where the minus sign gives wg and the plus sign
gives w3 . The two resonance frequencies as func-
tions of ¢ for the example are plotted in Fig. 5. The
upper curve represents the variation of plasma reso-
nance frequency wg with ¢, and the lower curve
gives the ¢ dependence of the conduction resonance
frequency wy. At the lower limit of ¢, we have for
wk and wg

w! 1 1/2
o {Zhi-(a-)" s
while at the upper limit of g, we get
g-1, wp=-0,
(15)

g~1, wp~(w-1/73)Y2-qr

These limits are apparent from Fig. 5.

It remains to be shown that the conduction and
plasma resonances for a free-electron metal ag-
gregate system occur at the exact frequencies for
which 8,=0, i.e., that the assumption which led to
(13) is correct. We prove this by showing that the
appropriate functions have maxima at the reso-
nance frequencies. For the conduction resonance,
we take 88,/8w from (4), substitute €, and €, from
(8) and (9), and substitute the resonance frequency

wh from Eq. (13). After the necessary manipula-
tions we find

(5.
dw “”“’k - ’

Similarly, we take 3(- Im 8 "')/3w for the plasma
resonance, substitute €; and €, from (8) and (9),
substitute the resonance frequency wg from (13),
carry out the necessary (and very large number of)
steps in the algebra, and find

3(-Im 81
(‘—aw——>w . =0
=¢0R

In the proof, we assumed that the resonances are
not critically damped, i.e., that w,7>1, thus (13)
is an exact relation only for free-electron systems
satisfying this condition.

IV. CONDUCTION RESONANCE

In the derivation above we labeled the resonance

|

feature in the &,(w) curve at wg optical conduction
resonance. The reason for the particular choice
is that we wish to consider the real part of the op-
tical conductivity o(w), rather than the imaginary
part of the optical dielectric constant §,(w) in con-
nection with the resonance.

To make the change, we introduce the conductivity
for the aggregated system as S(w)= §,w/47 and that
for the free-electron metal as 0(w)=¢€,w/4m1. From
(9), we see that o (w)=0y/(1 + w?7?), where 0 is the
dc conductivity given by 0= w? 7/47, The advantage
of using the conductivity instead of the dielectric
constant is that with w -0 we get 0 -0, whereas
at the same limit we have §,~ %, which is undesir-
able. Now we wish to determine the magnitude of
conductivity S(w) at resonance w; and compare it
to the dc conductivity 0,. The ¢ dependence of S(wg)
is illustrated in Fig. 6, where we calculated S(w, q)
from Eqs. (4), (8), (9), and (13) using the example.
Included in Fig. 6 is the free-electron curve o (w).
To derive an expression rigorously for S(wg, q) we

o 1 1 1 1 | 1 1
q=0.9
S(wa) | B
0.8 -
0.7

4 2 -
o
[+ 4

0.6 5 L

1z 0s ;
w
w

044 -
('S

0.3
0.2 -
\ ] K [oX]
0 T I/ T T I/ T rk
0 I 2 3 4
fwleV)
FIG. 6. Frequency dependence of optical conductivity

S(w, q) of the aggregated system at conduction resonance
for various values of ¢, in units of the dc conductivity

0y of the example. Curves were calculated from exact
relations (see text). Free-electron curve o(w) is also
included.
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€,

FIG. 7. An exaggerated representation of a hypotheti-
cal free-electron curve in the (€, €,) plane, showing
the relation between points R and R’, to illustrate the
validity of the approximation used in the text for conduc-
tion resonance.

would have to combine (4), (8), (9), and (13) but it
would lead to unmanageable algebra. Instead, we
use approximation.

From Fig. 3, we see that a free-electron curve
lies fairly close to the €, axis at the point - (2+¢g)/
(1-¢), and is almost parallel with the €, axis. For
this reason we may consider the point at which con-
duction resonance occurs to be the intersection of
the free-electron curve and the €;,=- (2+¢)/(1-¢q)
line, rather than the proper point at the intersection
of the free-electron curve and the §=0 contour.
The details may be seen from Fig. 7, where the
exact resonance point is denoted by R and the ap-
proximation by R’. The magnitude of S at reso-
nance R is related to the value &, in the figure,
while the approximate maximum of S at R’ is re-
lated to &; in the figure. For metals we usually
have w,7>> 1, which is equivalent to the free-elec-
tron curve running close to and almost parallel
with the €; axis. From the figure it is apparent
that for such a curve we have R~ R’, and that our
approach is reasonable.

Now we proceed with the calculation at R’, lead-
ing to the expression for S(wg, q). The value of &§;
at R’ from (7) is

8:=9¢/l€; 1-q)], (16)

where € is to be evaluated from the free-electron
curve at R’. This may be done by setting ¢,
== (2+9)/(1-¢q) in (8) and combining the result
with (9), yielding

e2=[3/1-llsA%1-q)-1]""% , %)

where A =w,7. We also get the approximate reso-
nance frequency as

wew [swf(l-q)-1/7]V2.
Combining (16) and (17) gives the value of &, at

(18)
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near resonance R’ as
8;=[3¢/(1-)lls4%1-q)-1]"2 . (19)

Now S(w)= 8,w/4m, so S(wg, q)= 85(q)wr/4m, where
85(@) is given by (19), and wg is given by (18). Note
that (18) is an approximate resonance frequency,
since the exact wg is given by (13). Combining the
relevant formulas we get

S(wk,q)=[A%-3/(1-q)]q/4rT.

For normal metals we have A2>>3/(1 - q) in the
range of g values considered here (i.e., g not too
close to 1), and so we get the final result for S

at resonance, as

S(wg,q)~0,4q , (20)

where 0 is the dc conductivity of the free-electron
metal.

Relation (20) tells us that the optical conductivity
of an aggregated free-electron metal system at
resonance is g proportion of the dc conductivity of
the constituent metal. Looking back to Fig. 6, we
see that this is exactly what we obtained numeri-
cally for the example. Since R is very close to R’
for normal metals in the free-electron regime, the
approximate relations (18) and (20) differ only a
few parts in 10* from the exact values.

V. PLASMA RESONANCE

The effect of aggregation on the plasma frequency
wg of a free-electron metal has already been con-

] 1 | ] ! L ]
1.0 L
09
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0.8 0.7 -
q=0.5
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=
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{ w
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1 \
0 T T T T T T T
4 5 6 7
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FIG. 8. Frequency dependence of the bulk electron

loss function of the aggregated system at plasma reso-
nance for various values of g, in units of the L for the
example. The curves were calculated from exact rela-
tions (see text). Free-electron curve is also included.
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sidered. and is given by (13). Here we wish to cal-
culate the magnitude of L 5 associated with the
aggregated system, and compare it with that of the
corresponding free-electron metal. Using the
example again, we carry out the exact numerical
calculation of Ly for various values of g from Egs.
(3), (4), and (8)-(10), and the plot the results in
Fig. 8. Included is Ly of the free-electron metal.
To derive an expression for the g-dependent max-
ima of L, rigorously would be hopeless, instead,
we use approximation, similar to that employed
for conduction resonance.

The situation for the approximation is illustrated
in Fig. 9. The exact point for plasma resonance
is R, the intersection of curves §,=0, &,, and the
free-electron curve. The approximate point is R’,
the intersection of the free-electron curve, and &,
at €,=-2(1-¢)/(1+2q9). Since a real free-electron
curve lies very close to the €, axis in the region of
interest for plasma resonance. R’ is very close to
R and we are justified to proceed with the calcula-
tion at R’. The value €;=-2(1-¢)/(1 +2q) is the
intersection of the &,=0 contour with the €, axis
and may be readily obtained from (5).

The object is to express §3 at this value of ¢,
in terms of the free-electron parameters and cal-
culate the maximum value of Lz. From (10) we
write L= &,/(8%+ &%) and see that the maximum
value for Ly given at §,=0is §;'. Now we pro-
ceed with the calculation.

First, we express the approximate resonance
frequency at R’ by setting €, =- 2(1-¢)/(1+2g) in
(8). We get

wrm [3wi(1+29) - 1/73M2 (21)

Note that this is an approximate relation and that
the exact value of w% is given by (13). Next, we
find €, at R’ by substituting wp from (21) for w in
(9). This gives

€5=[3/(1+2q)H{3(A%(1 + 29) - 3]}7/2, (22)

where A =w,T as before. Now we take §, from (4)
at §,=0 and express the bulk loss function at reso-
nance Lgz(wp, q). After some simplifying steps we
get

_ 99 +Ea(1-¢1)a
T€,(1+29)° 9

We may neglect the second term on the right-hand
side of (23) since €, is very small, and replace e,
in (23) by €, in (22) to get

Lp(wg, q)~Aq [3/(1+2¢)]V% . (24)

Now we compare the loss function of the aggre-
gated system Lz(wg, q) with that of the free-elec-
tron metal L (%) directly from (24) by considering
that L5 (R%)~A. [This may be readily seen from
(9) and (11) for good metals, i.e., for A2>1.]

Lp(wg, q)= &' (23)
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FIG. 9. An exaggerated representation of a hypotheti-
cal free-electron curve in the (€, €,) plane showing the
relation between points R and R’ to help calculate plasma
resonance in the text.

With this, we have the final expression for the mag-
nitude of the g-dependent loss function at plasma
resonance as

Lp(wp,q)~ Lp(Qr) [3/(1+29)]V2. (25)

A comparison of (25) and (21) with the exact nu-
merical results, e.g., with the curves in Fig. 8,
show a difference of only a few parts in 10*, thus
the relations may be considered to be very good
approximations for normal metals.

VI. DISCUSSION

The main features in the optical functions of a
system of free-electron metal aggregates have been
derived, and are given by Egs. (13), (18), (20),
(21), and (25). The latter four are approximate
relations, and apply to good metals only, while
Eq. (13) gives the resonance frequencies of any
aggregated free-electron system including semi-
conductors, etc. Deviations from free-electron
processes such as interband transitions in the met-
al aggregates complicate the situation, and the
functions can no longer be written down in a closed
form. However, a graphical analysis for non-free-
electron cases is still possible, and in fact is very
easy, by using the MG maps such as those in Fig.
2. One may also construct the inverse transforms
of the ones appearing in Fig. 2 from Eqgs. (5) and
(7). This would serve to interpret results obtained
experimentally from materials that are known to
be in aggregated form in terms of the properties
of the aggregates.

It should be mentioned at this point that the fre-
quency range in which conduction resonance is ex-
pected to occur is in the interband region for most
metals, and the resulting absorption may be mis-
taken to be due to interband processes. Notable
exceptions are some of the alkali metals discussed
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elsewhere.® The general effect of interband pro-
cesses on the conduction resonance is a marked
damping, resulting in a rather broad and shallow
absorption feature. This feature for real metals
will be discussed in the second part.

Turning our attention back to the system of free-
electron metal aggregates, it is instructive to write
down one last relation. From (18) and (21), and for
metals of w, 7> 1, we get

wr/wr~[1+29)/(1- )2, (26)

This equation tells us that the ratio of the aggregate
plasma frequency and the conduction resonance fre-
quency is independent of the type of metal, i.e.,
independent of w, and 7 in the first approximation.
This may be used, in comparison with experiment,
to gain information about the state of aggregation

of the constituent metal. Also, if the experimental
results deviate from the prediction of (26), and if
the reason for this is due to w, 7 being not much
greater than unity (which in turn may be caused

by small aggregate size), then the magnitude of 7
may be calculated, and the average size of the met-
al aggregates may be estimated.

Another important feature of (26) is that it serves
to illustrate that the optical conduction resonance
is not an electronic process in metals due to some
weird new band structure, neither is it plasma
resonance in the conventional sense. Equation (26)
shows us that conduction resonance exists only in
the aggregated state, that it is different from
plasma resonance, and that its frequency is related
to the modified plasma frequency through the ag-
gregation parameter ¢ only.

Next we discuss the nature of conduction reso-
nance. The question of what is conduction reso-
nance cannot be readily answered by the phenomeno-
logical MG theory. Instead, we offer the following
model, which appears to us to be realistic. Micro-
scopically, when light is incident on the system,
one small metal aggregate finds itself in a
periodic local field inside the aggregate sys-
tem, and its free electrons respond to the field,
sloshing back and forth within the volume of the
aggregate. Since the aggregate is assumed to be
much smaller than the incident wavelength, the
process involves all the free electrons in the ag-
gregate, not only the ones at the surface. This is
a periodic conduction current within the aggregate
causing a periodic polarization field around it—both
periods being equal to that of the incident radiation.
At a certain frequency the phase of conduction cur-
rents in all the aggregates become nearly equal,
resulting in a strong polarization field, which en-
hances the local field at the aggregate. Finally, at
a frequency where the real part of the dielectric
constant is zero, i.e., where the local currents
are exactly in phase with the driving electric field,

conduction resonance occurs.

At resonance the magnitude of conductivity of each
aggregate is identical with the dc conductivity and
that of the whole system is g fraction of the dc con-
ductivity of the constituent metal [see Eq. (20)].
Such high conductivity, at frequencies of a few elec-
tron volts, is not likely a normal free-electron
intraband transport process at the Fermi surface.
Rather, the collective oscillations at this frequency
may be considered as a transverse plasma reso-
nance.

We must be careful with transverse plasmons in
metals, knowing that they cannot be supported by
free electrons. In our case however, the sysiem
in which the light propagates is aggregated, and
the aggregates, being separated from their neigh-
bors, can respond to the transverse electric field.

The model advanced above is in no conflict with
the results of our present analysis, neither is it
physically unreal. We would expect a transverse
plasmon to couple to (transverse) photons of the
right frequency, and not couple to longitudinal dis-
turbances, such as fast electrons. This is indeed
what we get from the analysis, as evidenced from
Figs. 4(b) and 4(c) at frequency wg, i.e., we have
absorption of photons [Fig. 4(b)] and no electron
energy loss [Fig. 4(c)]. Conversely, we would ex-
pect a longitudinal (normal) plasmon to couple to
fast electrons and not to couple to photons. From
the same figure we get just that at wg, i.e., no pho-
ton absorption [Fig. 4(b)] and a sharp electron en-
ergy loss [Fig. 4(c)].

In spite of the attractiveness of the transverse
plasmon model, we prefer to call the absorption
at wp conduction resonance, since this is valid in
both macroscopic and microscopic views.

In the present paper, we paid no attention to sur-
face plasmcns!® because our calculations showed
no new or unusual effects due to aggregation. We
want to stress, however, that conduction resonance
and the resulting absorption should not be confused
with surface-plasmon resonance and the resulting
photon absorption. The two resonances always
have different frequencies, and the absorptions
caused by them differ greatly in magnitude. More-
over, surface plasmons may be excited by both
photons and fast electrons, whereas conduction
resonance can be excited by photons only.

In Paper II, the present results will be compared
with experiment, and the effects of optical inter-
band transitions on the conduction and plasma reso-

nances for aggregated systems of real metals will
be examined.

VII. CONCLUSIONS

The Maxwell-Garnett theory has been subjected
to detailed analysis for the general case and for
free-electron metals. The analysis revealed a
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sharp resonance ia the optical conductivity and a
bulk plasma resonance for aggregated free-elec-
tron-metal systems. Formulas for the resonance
frequencies and the strengths of the resonances
were derived. The conduction resonance appears
macroscopically to have a character of transverse
plasmons, while the plasma resonance is the nor-
mal longitudinal mode. The two resonance fre-
quencies for good metals are closely related through
the aggregation parameter and are independent of
the electronic parameters of the metal. The results
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of the present analysis lend themselves to be com-
pared easily with experiment. The theory is being
applied to real metals, and this will be the subject
of the second part of this series.
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